Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37514020

ABSTRACT

Long-acting injectable (LAI) formulations promise to deliver patient benefits by overcoming issues associated with non-adherence. A preclinical assessment of semi-solid prodrug nanoparticle (SSPN) LAI formulations of emtricitabine (FTC) is reported here. Pharmacokinetics over 28 days were assessed in Wistar rats, New Zealand white rabbits, and Balb/C mice following intramuscular injection. Two lead formulations were assessed for the prevention of an HIV infection in NSG-cmah-/- humanised mice to ensure antiviral activities were as anticipated according to the pharmacokinetics. Cmax was reached by 12, 48, and 24 h in rats, rabbits, and mice, respectively. Plasma concentrations were below the limit of detection (2 ng/mL) by 21 days in rats and rabbits, and 28 days in mice. Mice treated with SSPN formulations demonstrated undetectable viral loads (700 copies/mL detection limit), and HIV RNA remained undetectable 28 days post-infection in plasma, spleen, lung, and liver. The in vivo data presented here demonstrate that the combined prodrug/SSPN approach can provide a dramatically extended pharmacokinetic half-life across multiple preclinical species. Species differences in renal clearance of FTC mean that longer exposures are likely to be achievable in humans than in preclinical models.

2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982417

ABSTRACT

Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.


Subject(s)
Extracellular Vesicles , HIV Infections , Mice , Animals , Hepatic Stellate Cells/metabolism , Ethanol/metabolism , HIV Infections/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Acetaldehyde/metabolism , Extracellular Vesicles/metabolism
3.
Biology (Basel) ; 11(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-36101437

ABSTRACT

Recently, we found that both HIV and acetaldehyde, an alcohol metabolite, induce hepatocyte apoptosis, resulting in the release of large extracellular vesicles called apoptotic bodies (ABs). The engulfment of these hepatocyte ABs by hepatic stellate cells (HSC) leads to their profibrotic activation. This study aims to establish the mechanisms of HSC activation after engulfment of ABs from acetaldehyde and HIV-exposed hepatocytes (ABAGS+HIV). In vitro experiments were performed on Huh7.5-CYP (RLW) cells to generate hepatocyte ABs and LX2 cells were used as HSC. To generate ABs, RLW cells were pretreated for 24 h with acetaldehyde, then exposed overnight to HIV1ADA and to acetaldehyde for 96 h. Thereafter, ABs were isolated from cell suspension by a differential centrifugation method and incubated with LX2 cells (3:1 ratio) for profibrotic genes and protein analyses. We found that HSC internalized ABs via the tyrosine kinase receptor, Axl. While the HIV gag RNA/HIV proteins accumulated in ABs elicited no productive infection in LX2 and immune cells, they triggered ROS and IL6 generation, which, in turn, activated profibrotic genes via the JNK-ERK1/2 and JAK-STAT3 pathways. Similarly, ongoing profibrotic activation was observed in immunodeficient NSG mice fed ethanol and injected with HIV-derived RLW ABs. We conclude that HSC activation by hepatocyte ABAGS+HIV engulfment is mediated by ROS-dependent JNK-ERK1/2 and IL6 triggering of JAK-STAT3 pathways. This can partially explain the mechanisms of liver fibrosis development frequently observed among alcohol abusing PLWH.

4.
Alcohol Clin Exp Res ; 46(1): 40-51, 2022 01.
Article in English | MEDLINE | ID: mdl-34773268

ABSTRACT

BACKGROUND AND AIMS: Approximately 3.5% of the global population is chronically infected with Hepatitis B Virus (HBV), which puts them at high risk of end-stage liver disease, with the risk of persistent infection potentiated by alcohol consumption. However, the mechanisms underlying the effects of alcohol on HBV persistence remain unclear. Here, we aimed to establish in vivo/ex vivo evidence that alcohol suppresses HBV peptides-major histocompatibility complex (MHC) class I antigen display on primary human hepatocytes (PHH), which diminishes the recognition and clearance of HBV-infected hepatocytes by cytotoxic T-lymphocytes (CTLs). METHODS: We used fumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chain knock-out (FRG-KO) humanized mice transplanted with human leukocyte antigen-A2 (HLA-A2)-positive hepatocytes. The mice were HBV-infected and fed control and alcohol diets. Isolated hepatocytes were exposed ex vivo to HBV 18-27-HLA-A2-restricted CTLs to quantify cytotoxicity. For mechanistic studies, we measured proteasome activities, unfolded protein response (UPR), and endoplasmic reticulum (ER) stress in hepatocytes from HBV-infected humanized mouse livers. RESULTS AND CONCLUSIONS: We found that alcohol feeding attenuated HBV core 18-27-HLA-A2 complex presentation on infected hepatocytes due to the suppression of proteasome function and ER stress induction, which diminished both the processing of HBV peptides and trafficking of HBV-MHC class I complexes to the hepatocyte surface. This alcohol-mediated decrease in MHC class I-restricted antigen presentation of the CTL epitope on target hepatocytes reduced the CTL-specific elimination of infected cells, potentially leading to HBV-infection persistence, which promotes end-stage liver disease outcomes.


Subject(s)
Antigen Presentation/drug effects , Ethanol/pharmacology , Hepatitis B virus/immunology , Hepatitis B/immunology , Hepatocytes/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , End Stage Liver Disease/virology , Endoplasmic Reticulum Stress/drug effects , Gene Expression/drug effects , HLA-A2 Antigen/analysis , Hepatocytes/transplantation , Hepatocytes/virology , Heterografts , Histocompatibility Antigens Class I/immunology , Humans , Mice , Mice, Knockout , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/physiology , Unfolded Protein Response/genetics
5.
Front Cardiovasc Med ; 8: 792180, 2021.
Article in English | MEDLINE | ID: mdl-34970611

ABSTRACT

Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.

6.
J Neuroimmune Pharmacol ; 16(4): 796-805, 2021 12.
Article in English | MEDLINE | ID: mdl-34528173

ABSTRACT

Defining the latent human immunodeficiency virus type 1 (HIV-1) burden in the human brain during progressive infection is limited by sample access. Human hematopoietic stem cells (hu-HSCs)-reconstituted humanized mice provide an opportunity for this study. The model mimics, in measure, HIV-1 pathophysiology, transmission, treatment, and elimination in an infected human host. However, to date, brain HIV-1 latency in hu-HSC mice during suppressive antiretroviral therapy (ART) was not studied. To address this need, hu-HSC mice were administered long acting (LA) ART 14 days after HIV-1 infection was established. Animals were maintained under suppressive ART for 3 months, at which time HIV-1 infection was detected at low levels in brain tissue by droplet digital polymerase chain reaction (ddPCR) test on DNA. Notably, adoptive transfer of cells acquired from the hu-HSC mouse brains and placed into naive hu-HSC mice demonstrated viral recovery. These proof-of-concept results demonstrate replication-competent HIV-1 reservoir can be established in hu-HSC mouse brains that persists during long-term ART treatment. Hu-HSC mice-based mouse viral outgrowth assay (hu-MVOA) serves as a sensitive tool to interrogate latent HIV-1 brain reservoirs.


Subject(s)
HIV Infections , HIV-1 , Adoptive Transfer , Animals , Brain , CD4-Positive T-Lymphocytes , Disease Models, Animal , HIV Infections/drug therapy , Mice , Viral Load , Virus Latency , Virus Replication
7.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G432-G442, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32755306

ABSTRACT

Alcohol consumption worsens hepatitis B virus (HBV) infection pathogenesis. We have recently reported that acetaldehyde suppressed HBV peptide-major histocompatibility complex I (MHC class I) complex display on hepatocytes, limiting recognition and subsequent removal of the infected hepatocytes by HBV-specific cytotoxic T lymphocytes (CTLs). This suppression was attributed to impaired processing of antigenic peptides by the proteasome. However, in addition to proteasome dysfunction, alcohol may induce endoplasmic reticulum (ER) stress and Golgi fragmentation in HBV-infected liver cells to reduce uploading of viral peptides to MHC class I and/or trafficking of this complex to the hepatocyte surface. Hence, the aim of this study was to elucidate whether alcohol-induced ER stress and Golgi fragmentation affect HBV peptide-MHC class I complex presentation on HBV+ hepatocytes. Here, we demonstrate that, while both acetaldehyde and HBV independently cause ER stress and Golgi fragmentation, the combined exposure provided an additive effect. Thus we observed an activation of the inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α, but not the phospho PKR-like ER kinase-phospho eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein arms of ER stress in HBV-transfected cells treated with acetaldehyde-generating system (AGS). In addition, Golgi proteins trans-Golgi network 46, GM130, and Giantin revealed punctate distribution, indicating Golgi fragmentation upon AGS exposure. Furthermore, the effects of acetaldehyde were reproduced by treatment with ER stress inducers, thapsigargin and tunicamycin, which also decreased the display of this complex and MHC class I turnover in HepG2.2.15 cells and HBV-infected primary human hepatocytes. Taken together, alcohol-induced ER stress and Golgi fragmentation contribute to the suppression of HBV peptide-MHC class I complex presentation on HBV+ hepatocytes, which may diminish their recognition by CTLs and promote persistence of HBV infection in hepatocytes.NEW & NOTEWORTHY Our current findings show that acetaldehyde accelerates endoplasmic reticulum (ER) stress by activating the unfolded protein response arms inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α but not phospho PKR-like ER kinase-p eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein in hepatitis B virus (HBV)-transfected HepG2.2.15 cells. It also potentiates Golgi fragmentation, as evident by punctate distribution of Golgi proteins, GM130, trans-Golgi network 46, and Giantin. While concomitantly increasing HBV DNA and HBV surface antigen titers, acetaldehyde-induced ER stress suppresses the presentation of HBV peptide-major histocompatibility complex I complexes on hepatocyte surfaces, thereby promoting the persistence of HBV infection in the liver.


Subject(s)
Antigen Presentation/drug effects , Endoplasmic Reticulum Stress/drug effects , Golgi Apparatus/drug effects , Hepatitis B virus/immunology , Histocompatibility Antigens Class I/immunology , Liver/virology , Acetaldehyde , Endoplasmic Reticulum Stress/genetics , Gene Expression/drug effects , Golgi Apparatus/ultrastructure , HLA-A2 Antigen/analysis , Hep G2 Cells , Hepatitis B virus/genetics , Histocompatibility Antigens Class I/drug effects , Humans , Liver/immunology , RNA, Messenger/analysis , Transfection , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
8.
Nanomedicine ; 28: 102185, 2020 08.
Article in English | MEDLINE | ID: mdl-32217146

ABSTRACT

Nowadays, there is a strong request for the treatment of chronic HBV-infection with direct acting antivirals. Furthermore, prevalent human immunodeficiency virus (HIV-1) and hepatitis B (HBV) co-infections highlight an immediate need for dual long-acting and easily administered antivirals. To this end, we modified lamivudine (3TC), a nucleoside analog inhibitor of both viruses, into a lipophilic monophosphorylated prodrug (M23TC). Prior work demonstrated that nanoformulation of M23TC (NM23TC) enhanced drug stability, controlled dissolution and improved access to sites of viral replication. The present study evaluated the efficacy of a NM23TC in HBV-infected chimeric liver humanized mice. Levels of HBV DNA and HBsAg in plasma were monitored up to 8 weeks posttreatment. A single intramuscular dose of 75 mg/kg 3TC equivalents of nanoformulated NM23TC provided sustained drug levels and suppressed HBV replication in humanized mice for 4 weeks. The results support further development of this long-acting 3TC nanoformulation for HBV treatment and prevention.


Subject(s)
Lamivudine/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Immunohistochemistry , Lamivudine/pharmacology , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Virus Replication/drug effects
9.
Biomolecules ; 9(12)2019 12 10.
Article in English | MEDLINE | ID: mdl-31835520

ABSTRACT

In an era of improved survival due to modern antiretroviral therapy, liver disease has become a major cause of morbidity and mortality, resulting in death in 15-17% of human immunodeficiency virus (HIV)-infected patients. Alcohol enhances HIV-mediated liver damage and promotes the progression to advanced fibrosis and cirrhosis. However, the mechanisms behind these events are uncertain. Here, we hypothesize that ethanol metabolism potentiates accumulation of HIV in hepatocytes, causing oxidative stress and intensive apoptotic cell death. Engulfment of HIV-containing apoptotic hepatocytes by non-parenchymal cells (NPCs) triggers their activation and liver injury progression. This study was performed on primary human hepatocytes and Huh7.5-CYP cells infected with HIV-1ADA, and major findings were confirmed by pilot data obtained on ethanol-fed HIV-injected chimeric mice with humanized livers. We demonstrated that ethanol exposure potentiates HIV accumulation in hepatocytes by suppressing HIV degradation by lysosomes and proteasomes. This leads to increased oxidative stress and hepatocyte apoptosis. Exposure of HIV-infected apoptotic hepatocytes to NPCs activates the inflammasome in macrophages and pro-fibrotic genes in hepatic stellate cells. We conclude that while HIV and ethanol metabolism-triggered apoptosis clears up HIV-infected hepatocytes, continued generation of HIV-expressing apoptotic bodies may be detrimental for progression of liver inflammation and fibrosis due to constant activation of NPCs.


Subject(s)
End Stage Liver Disease , Ethanol , Hepatocytes/drug effects , Acetaldehyde/toxicity , Animals , Apoptosis , Cell Line , Disease Progression , End Stage Liver Disease/pathology , End Stage Liver Disease/virology , Ethanol/metabolism , Ethanol/toxicity , HIV/pathogenicity , HIV Infections/complications , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/virology , Hepatocytes/pathology , Hepatocytes/virology , Humans , Liver/pathology , Liver/virology , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Mice , Oxidative Stress
10.
J Vis Exp ; (151)2019 09 11.
Article in English | MEDLINE | ID: mdl-31566621

ABSTRACT

Despite the increased life expectancy of patients infected with human immunodeficiency virus-1 (HIV-1), liver disease has emerged as a common cause of their morbidity. The liver immunopathology caused by HIV-1 remains elusive. Small xenograft animal models with human hepatocytes and human immune system can recapitulate the human biology of the disease's pathogenesis. Herein, a protocol is described to establish a dual humanized mouse model through human hepatocytes and CD34+ hematopoietic stem/progenitor cells (HSPCs) transplantation, to study liver immunopathology as observed in HIV-infected patients. To achieve dual reconstitution, male TK-NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-TK)7-2/ShiJic) mice are intraperitoneally injected with ganciclovir (GCV) doses to eliminate mouse transgenic liver cells, and with treosulfan for nonmyeloablative conditioning, both of which facilitate human hepatocyte (HEP) engraftment and human immune system (HIS) development. Human albumin (ALB) levels are evaluated for liver engraftment, and the presence of human immune cells in blood detected by flow cytometry confirms the establishment of human immune system. The model developed using the protocol described here resembles multiple components of liver damage from HIV-1 infection. Its establishment could prove to be essential for studies of hepatitis virus co-infection and for the evaluation of antiviral and antiretroviral drugs.


Subject(s)
HIV Infections/complications , Hepatocytes/transplantation , Liver Diseases/therapy , Animals , Disease Models, Animal , HIV-1 , Humans , Liver/immunology , Liver Diseases/complications , Mice , Mice, SCID , Transplantation Conditioning , Transplantation, Heterologous
11.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G127-G140, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31141391

ABSTRACT

Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.


Subject(s)
Acetaldehyde/metabolism , Chymases/metabolism , Ethanol/metabolism , Hepatitis B , Major Histocompatibility Complex/immunology , Serine Endopeptidases/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism , Antigen Presentation , HLA-D Antigens/immunology , Hep G2 Cells , Hepatitis B/immunology , Hepatitis B/metabolism , Hepatitis B virus/immunology , Humans , Interferon-gamma/metabolism , Proteasome Endopeptidase Complex/metabolism , T-Lymphocytes, Cytotoxic/immunology
12.
Mol Neurodegener ; 14(1): 12, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30832693

ABSTRACT

BACKGROUND: Microglia are the principal innate immune defense cells of the centeral nervous system (CNS) and the target of the human immunodeficiency virus type one (HIV-1). A complete understanding of human microglial biology and function requires the cell's presence in a brain microenvironment. Lack of relevant animal models thus far has also precluded studies of HIV-1 infection. Productive viral infection in brain occurs only in human myeloid linage microglia and perivascular macrophages and requires cells present throughout the brain. Once infected, however, microglia become immune competent serving as sources of cellular neurotoxic factors leading to disrupted brain homeostasis and neurodegeneration. METHODS: Herein, we created a humanized bone-marrow chimera producing human "microglia like" cells in NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL34)1/Jic mice. Newborn mice were engrafted intrahepatically with umbilical cord blood derived CD34+ hematopoietic stem progenitor cells (HSPC). After 3 months of stable engraftment, animals were infected with HIV-1ADA, a myeloid-specific tropic viral isolate. Virologic, immune and brain immunohistology were performed on blood, peripheral lymphoid tissues, and brain. RESULTS: Human interleukin-34 under the control of the cytomegalovirus promoter inserted in NSG mouse strain drove brain reconstitution of HSPC derived peripheral macrophages into microglial-like cells. These human cells expressed canonical human microglial cell markers that included CD14, CD68, CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2 and P2RY12. Prior restriction to HIV-1 infection in the rodent brain rested on an inability to reconstitute human microglia. Thus, the natural emergence of these cells from ingressed peripheral macrophages to the brain could allow, for the first time, the study of a CNS viral reservoir. To this end we monitored HIV-1 infection in a rodent brain. Viral RNA and HIV-1p24 antigens were readily observed in infected brain tissues. Deep RNA sequencing of these infected mice and differential expression analysis revealed human-specific molecular signatures representative of antiviral and neuroinflammatory responses. CONCLUSIONS: This humanized microglia mouse reflected human HIV-1 infection in its known principal reservoir and showed the development of disease-specific innate immune inflammatory and neurotoxic responses mirroring what can occur in an infected human brain.


Subject(s)
Disease Models, Animal , HIV Infections/immunology , HIV Infections/virology , Interleukins , Microglia/virology , Animals , Cell Differentiation , HIV-1 , Hematopoietic Stem Cell Transplantation , Humans , Mice , Mice, Inbred NOD
13.
Biochem Biophys Res Commun ; 500(3): 717-722, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29679566

ABSTRACT

HIV-HCV co-infection causes rapid progression of liver fibrosis. These outcomes to liver cirrhosis can be improved, but not stopped by specific antiviral therapies. Due to high significance of HIV-HCV interactions for morbidity and mortality in co-infected patients, our attention was attracted to the multi-component pathogenesis of fibrosis progression as the transition to end-stage liver disease development. In this study, we hypothesize that increased matrix stiffness enhances apoptosis in HCV-HIV-co-infected hepatocytes and that capturing of apoptotic bodies (AB) derived from these infected hepatocytes by hepatic stellate cells (HSC) drives the fibrosis progression. As the source of viruses, JFH1 (HCV genotype 2a) and HIV-1ADA (either purified or containing in infected macrophage supernatants) were chosen. Using Huh7.5-CYP (RLW) cells and primary human hepatocytes mono-infected with HCV and HIV or co-infected, we have shown that both HCV and HIV RNA levels were increased in co-infected cells, which was accompanied by hepatocyte apoptosis. This apoptosis was attenuated by azidothymidine treatment. The levels of both infections and apoptosis were more prominent in primary hepatocytes cultured on substrates mimicking fibrotic stiffness (24 kPa-stiff) compared to substrates mimicking healthy liver (2.4 kPa-soft). The engulfment of AB from pathogen-exposed hepatocytes activated pro-fibrotic mRNAs in HSC. Overall, the increased matrix stiffness is not only a consequence of liver inflammation/fibrosis, but the condition that further accelerates liver fibrosis development. This is attributed to the switching of HSC to pro-fibrotic phenotype by capturing of excessive amounts of apoptotic HCV- and HIV-infected hepatocytes.


Subject(s)
Apoptosis , Coinfection/pathology , Disease Progression , Extracellular Matrix/metabolism , HIV Infections/pathology , Hepatitis C/pathology , Hepatocytes/virology , Liver Cirrhosis/virology , Biomechanical Phenomena , Caspase 3/metabolism , Cell Line, Tumor , Cells, Cultured , Coinfection/virology , Elastic Modulus , HIV Infections/virology , Hepatitis C/virology , Hepatocytes/pathology , Humans , Liver Cirrhosis/pathology , RNA, Viral/metabolism
14.
J Pharmacol Exp Ther ; 365(2): 272-280, 2018 05.
Article in English | MEDLINE | ID: mdl-29476044

ABSTRACT

Antiretroviral drug (ARV) metabolism is linked largely to hepatic cytochrome P450 activity. One ARV drug class known to be metabolized by intestinal and hepatic CYP3A are the protease inhibitors (PIs). Plasma drug concentrations are boosted by CYP3A inhibitors such as cobisistat and ritonavir (RTV). Studies of such drug-drug interactions are limited since the enzyme pathways are human specific. While immune-deficient mice reconstituted with human cells are an excellent model to study ARVs during human immunodeficiency virus type 1 (HIV-1) infection, they cannot reflect human drug metabolism. Thus, we created a mouse strain with the human pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 genes on a NOD.Cg-Prkdcscid Il2rgtm1Sug /JicTac background (hCYP3A-NOG) and used them to evaluate the impact of human CYP3A metabolism on ARV pharmacokinetics. In proof-of-concept studies we used nanoformulated atazanavir (nanoATV) with or without RTV. NOG and hCYP3A-NOG mice were treated weekly with 50 mg/kg nanoATV alone or boosted with nanoformulated ritonavir (nanoATV/r). Plasma was collected weekly and liver was collected at 28 days post-treatment. Plasma and liver atazanavir (ATV) concentrations in nanoATV/r-treated hCYP3A-NOG mice were 2- to 4-fold higher than in replicate NOG mice. RTV enhanced plasma and liver ATV concentrations 3-fold in hCYP3A-NOG mice and 1.7-fold in NOG mice. The results indicate that human CYP3A-mediated drug metabolism is reduced compared with mouse and that RTV differentially affects human gene activity. These differences can affect responses to PIs in humanized mouse models of HIV-1 infection. Importantly, hCYP3A-NOG mice reconstituted with human immune cells can be used for bench-to-bedside translation.


Subject(s)
Anti-HIV Agents/pharmacology , Cytochrome P-450 CYP3A/genetics , Pregnane X Receptor/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Anti-HIV Agents/pharmacokinetics , Constitutive Androstane Receptor , Drug Interactions , Gene Expression Regulation/drug effects , Humans , Liver/drug effects , Liver/metabolism , Mice , Tissue Distribution , Translational Research, Biomedical
15.
Biol Open ; 7(2)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29361613

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis.This article has an associated First Person interview with the first author of the paper.

16.
Mol Neurobiol ; 53(5): 3286-3297, 2016 07.
Article in English | MEDLINE | ID: mdl-26063593

ABSTRACT

Progressive human immunodeficiency viral (HIV) infection commonly leads to a constellation of cognitive, motor, and behavioral impairments. These are collectively termed HIV-associated neurocognitive disorders (HAND). While antiretroviral therapy (ART) reduces HAND severity, it does not affect disease prevalence. Despite decades of research, there remain no biomarkers for HAND and all potential comorbid conditions must first be excluded for a diagnosis to be made. To this end, we now report that manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) can reflect brain region-specific HIV-1-induced neuropathology in chronically virus-infected NOD/scid-IL-2Rγc(null) humanized mice. MEMRI diagnostics mirrors the abilities of Mn(2+) to enter and accumulate in affected neurons during disease. T1 relaxivity and its weighted signal intensity are proportional to Mn(2+) activities in neurons. In 16-week virus-infected humanized mice, altered MEMRI signal enhancement was easily observed in affected brain regions. These included, but were not limited to, the hippocampus, amygdala, thalamus, globus pallidus, caudoputamen, substantia nigra, and cerebellum. MEMRI signal was coordinated with levels of HIV-1 infection, neuroinflammation (astro- and micro-gliosis), and neuronal injury. MEMRI accurately demonstrates the complexities of HIV-1-associated neuropathology in rodents that reflects, in measure, the clinical manifestations of neuroAIDS as it is seen in a human host.


Subject(s)
Brain/pathology , Brain/virology , Disease Progression , HIV Infections/diagnosis , HIV-1/physiology , Magnetic Resonance Imaging , Manganese/chemistry , Animals , Antigens, CD34/metabolism , Hippocampus/pathology , Hippocampus/virology , Humans , Immunohistochemistry , Leukocytes/pathology , Mice , Models, Biological , Signal Processing, Computer-Assisted , Time Factors
17.
Biol Open ; 4(10): 1243-52, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26353862

ABSTRACT

Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.

18.
Mol Neurodegener ; 9: 58, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25523827

ABSTRACT

BACKGROUND: Host-species specificity of the human immunodeficiency virus (HIV) limits pathobiologic, diagnostic and therapeutic research investigations to humans and non-human primates. The emergence of humanized mice as a model for viral infection of the nervous system has overcome such restrictions enabling research for HIV-associated end organ disease including behavioral, cognitive and neuropathologic deficits reflective of neuroAIDS. Chronic HIV-1 infection of NOD/scid-IL-2Rgcnull mice transplanted with human CD34+ hematopoietic stem cells (CD34-NSG) leads to persistent viremia, profound CD4+ T lymphocyte loss and infection of human monocyte-macrophages in the meninges and perivascular spaces. Murine cells are not infected with virus. METHODS: Changes in mouse behavior were measured, starting at 8 weeks after viral infection. These were recorded coordinate with magnetic resonance spectroscopy metabolites including N-acetylaspartate (NAA), creatine and choline. Diffusion tensor magnetic resonance imaging (DTI) was recorded against multispectral immunohistochemical staining for neuronal markers that included microtubule associated protein-2 (MAP2), neurofilament (NF) and synaptophysin (SYN); for astrocyte glial fibrillary acidic protein (GFAP); and for microglial ionized calcium binding adaptor molecule 1 (Iba-1). Oligodendrocyte numbers and integrity were measured for myelin associated glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG) antigens. RESULTS: Behavioral abnormalities were readily observed in HIV-1 infected mice. Longitudinal open field activity tests demonstrated lack of habituation indicating potential for memory loss and persistent anxiety in HIV-1 infected mice compared to uninfected controls. End-point NAA and creatine in the cerebral cortex increased with decreased MAG. NAA and glutamate decreased with decreased SYN and MAG. Robust inflammation reflected GFAP and Iba-1 staining intensities. DTI metrics were coordinate with deregulation of NF, Iba-1, MOG and MAG levels in the whisker barrel and MAP2, NF, MAG, MOG and SYN in the corpus callosum. CONCLUSIONS: The findings are consistent with some of the clinical, biochemical and pathobiologic features of human HIV-1 nervous system infections. This model will prove useful towards investigating the mechanisms of HIV-1 induced neuropathology and in developing novel biomarkers and therapeutic strategies for disease.


Subject(s)
Axons/pathology , Brain/virology , Cognition Disorders/physiopathology , HIV Infections , HIV-1 , Memory Disorders/physiopathology , Animals , Brain/pathology , Cognition Disorders/virology , Humans , Memory Disorders/virology , Mice , Mice, Inbred NOD , Microtubule-Associated Proteins/metabolism
19.
Am J Pathol ; 184(1): 101-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24200850

ABSTRACT

Human-specific HIV-1 and hepatitis co-infections significantly affect patient management and call for new therapeutic options. Small xenotransplantation models with human hepatocytes and hematolymphoid tissue should facilitate antiviral/antiretroviral drug trials. However, experience with mouse strains tested for dual reconstitution is limited, with technical difficulties such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities. The best animal strains for hepatocyte transplantation are not optimal for human hematopoietic stem cell (HSC) engraftment, and vice versa. We evaluated a new strain of highly immunodeficient nonobese diabetic/Shi-scid (severe combined immunodeficiency)/IL-2Rγc(null) (NOG) mice that carry two copies of the mouse albumin promoter-driven urokinase-type plasminogen activator transgene for dual reconstitution with human liver and immune cells. Three approaches for dual reconstitution were evaluated: i) freshly isolated fetal hepatoblasts were injected intrasplenically, followed by transplantation of cryopreserved HSCs obtained from the same tissue samples 1 month later after treosulfan conditioning; ii) treosulfan conditioning is followed by intrasplenic simultaneous transplantation of fetal hepatoblasts and HSCs; and iii) transplantation of mature hepatocytes is followed by mismatched HSCs. The long-term dual reconstitution was achieved on urokinase-type plasminogen activator-NOG mice with mature hepatocytes (not fetal hepatoblasts) and HSCs. Even major histocompatibility complex mismatched transplantation was sustained without any evidence of hepatocyte rejection by the human immune system.


Subject(s)
Coinfection , Disease Models, Animal , Hematopoietic Stem Cell Transplantation/methods , Hepatocytes/transplantation , Animals , Antineoplastic Agents, Alkylating/pharmacology , Busulfan/analogs & derivatives , Busulfan/pharmacology , HIV Infections , Hepatitis C , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Transgenes , Urokinase-Type Plasminogen Activator/genetics
20.
Nanomedicine ; 10(1): 177-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23845925

ABSTRACT

Antiviral therapy using nucleoside reverse transcriptase inhibitors (NRTIs) is neurotoxic and has low efficiency in eradication of HIV-1 harbored in central nervous system (CNS). Previously, we reported that active 5'-triphosphates of NRTIs encapsulated in cationic nanogels (nano-NRTIs) suppress HIV-1 activity more efficiently than NRTIs and exhibit reduced mitochondrial toxicity [Vinogradov SV, Poluektova LY, Makarov E, Gerson T, Senanayake MT. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother. 2010; 21:1-14. Makarov E, Gerson T, Senanayake T, Poluektova LY, Vinogradov. Efficient suppression of Human Immunodeficiency Virus in Macrophages by Nano-NRTIs. Antiviral Res. 2010; 86(1):A38-9]. Here, we demonstrated low neurotoxicity and excellent antiviral activity of nano-NRTIs decorated with the peptide (AP) binding brain-specific apolipoprotein E receptor. Nano-NRTIs induced lower levels of apoptosis and formation of reactive oxygen species, a major cause of neuron death, than free NRTIs. Optimization of size, surface decoration with AP significantly increased brain accumulation of nano-NRTIs. The efficient CNS delivery of nano-NRTIs resulted in up to 10-fold suppression of retroviral activity and reduced virus-associated inflammation in humanized mouse model of HIV-1 infection in the brain. Our data provide proof of the advanced efficacy of nano-NRTIs as safer alternative of current antiviral drugs. FROM THE CLINICAL EDITOR: This team of investigators demonstrated low neurotoxicity and excellent anti-HIV activity of nano-nucleoside reverse transcriptase inhibitors decorated with the peptide (AP) binding brain-specific apolipoprotein E receptor, providing proof of enhanced efficacy and a safer alternative compared with current antiviral drugs.


Subject(s)
Antiviral Agents/administration & dosage , HIV Infections/drug therapy , Polyethylene Glycols/administration & dosage , Polyethyleneimine/administration & dosage , Reverse Transcriptase Inhibitors/administration & dosage , Animals , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Apoptosis/drug effects , Brain/drug effects , Central Nervous System/drug effects , Central Nervous System/pathology , HIV Infections/virology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/pathogenicity , Humans , Mice , Mice, Transgenic , Nanogels , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Reactive Oxygen Species/metabolism , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...